分分彩群

qq个性签名  qq伤感签名  qq情侣签名  qq搞笑签名  非主流签名 

您现在所的位置: 首页 - 个性头像 - 女生头像 - 正文

美女头像这么多,腾讯云安全用大数据告诉你哪个是骗子正文

类别:女生头像 | 点击: | 日期:2019-05-03

编者按:作为拥有微信和qq等社交应用的腾讯,用户数据是其非常重要的资源,同时也是腾讯安全重点关注的领域,连CEO马化腾都一直在讲,未来的安全是大数据安全。

腾讯云安全总监周斌(Blue)在2017腾讯安全技术国际峰会中,就以“大数据下的黑产画像和反欺诈能力建设”为主题,介绍了在过去一年多的时间里面,腾讯怎样运用大数据的能力更快、更好去发现安全威胁,如何运用大数据的算法揪出异常账户。下面为周斌在现场的演讲,雷锋网编辑在不改变原意的基础上做了适当的删减和整理。

周斌(Blue): 腾讯云安全总监“大数据下的黑产画像和反欺诈能力建设”

在正式开始之前,我想先跟大家看一张老照片。

美女头像这么多,腾讯云安全用大数据告诉你哪个是骗子

这是一张黑白照片,可能稍微有点模糊,各位是不是觉得有些眼熟?这是在广西丛林中的一张照片,大家可以看到,这个照片其实有两张图,左边这张图是帐篷,右边是账篷的内景。

这是我们前几年通过一些技术的手段,包括一些线下合作,打击到的黑产团伙。这个团伙在丛林里面搭起了一个迷彩的帐篷,架起了基战和发电机,大概有几十台笔记本在专门做黑产,主要就是羊毛党,从事验证码的对抗工作。

根据我们统计到的数据,目前中国从事黑产的人已经超过了100万,市面上流传的身份证至少超过1000万张。整个黑产产值年过千亿,有大概数百亿条的恶意链接,存在于黑产的手里。

在这种情况下如何做对抗,腾讯也做了初步的研讨。

美女头像这么多,腾讯云安全用大数据告诉你哪个是骗子

我今天的内容大概会分成两块来讲,一块是我们看到的,除了这个团伙以外,背后还在做的一些事情。另外一块,是腾讯通过算法和模型,在对抗上面做的一些动作。

回到这个山林中的迷彩帐篷来看,这样一个完整的产业链已经突破了原来的认知,他们已经变成了什么样的?

美女头像这么多,腾讯云安全用大数据告诉你哪个是骗子

在这个帐篷里面他们会做什么事情?做勒索,薅羊毛,做更多的事情,面向O2O,面向互联网公司,面向银行,去做大量、更多获益的动作。

为什么会有这种动作,这与今天中国线下黑产产业的蓬勃发展是有关系的。根据我们现在总结的数据,以刚刚迷彩帐篷为例,针对国内网站的攻击基本上是200块钱一次,600块钱一天,这足以击垮中国绝大多数的网站。

这其实仅仅只是开始,他们手上掌握了大量的资源,接下来还会有更多的变化。

根据我们现在统计看到的情况,2016年全年平均每5个小时就会有一起由于黑产掌握的资源所有发生的数据泄露案例,除了攻击以外,大部分是拖库和撞库。

对方拿到资源以后,主要是针对主流的公司,除去刚刚提到攻击,背后的动作我们可以看一看,这是我拿到的一个截图。

美女头像这么多,腾讯云安全用大数据告诉你哪个是骗子

刚刚我们看到的团伙是黑白图片,这里换成了彩色图片。

美女头像这么多,腾讯云安全用大数据告诉你哪个是骗子

右上角的猫池,这个设备现在在华强北可以买到,左边这些图我会再做一些延伸,左边是控制端。

第一个图看上去,可能大家会觉得很眼熟,这个很像手机的众测平台,但实际上不是,是手机破解的平台,专门用来破解手机的短信。第二和第三张图是猫池的控制终端,通过一排电脑集中去控制我们所有的猫池设备,去对相应的短信进行连接。下面的第一张图是所有这种设备卡存放的系统,最后两张图也是跟猫池相关的。

美女头像这么多,腾讯云安全用大数据告诉你哪个是骗子

这是一个完整的产业链,刚刚我只是描述了其中的一个过程。从黑产来看,其已经形成了一个完整分工协作、高度产业化的链条,我把它分成了三个环节。上游、中游和下游。

上游是软件开发的环节,软件开发环节有高速验证码的平台,有手机卡的注册、售卖渠道、注册商以及相应微片的提供商。在中游,有专门的团队去提供批量的注册,恶意账户等过程,最后还可以进行相应号码分发的流程。在下游,所有获利的环节,包括像优惠券的获取,新手的任务,超值商品的秒杀以及活动、奖励等行为,这一切其实都在变化,这些变化是因为技术的进步,是因为整个产业的进步,更是因为对手也在采用新的思路。

从腾讯来讲,刚刚我其实与一位同事做了一些交流,传统的对抗情况下,我们多采用规则的方式去进行。但走到今天,传统的规则已经不能够适应所有的场景,所以我们在算法模型上面做了一些探讨和应用。

算法和模型作为机器学习是基础,在安全领域,我们在过往在场景的应用当中也碰到了很多坑,最开始的时候,我们其实基础的出发点是希望能够用机器学习的模型来取代传统专家规则的应用。

美女头像这么多,腾讯云安全用大数据告诉你哪个是骗子

大家可以看到右边上面的图,右边上面我画了一个图,他有两个部分,下半部分是基于专家模型的应用,传统是我们用安全专家来生成定义的规则,我们把规则引入到引擎当中,进入到线网去进行比对、拦截。在这个基础上,我刚刚讲过我们第一步最开始碰到的,是希望把这些规则能够通过机器学习去做进一步的升级,在这个阶段我们做的工作是把这些专家规则生成的流程和具体的规则,由我们的算法工程师依据特征工程的方式来进行特征的筛选,然后我们把这些特征的筛选引入到机器学习的引擎当中,去进行异常的识别并进行拦截。

但是这个地方做完以后,我们碰到了很多的坑,一个最大的问题是,由于攻击方法是多样的,他有无限种可能,基于规则的这种学习,其实很难去覆盖到所有的环节里面,而且更大的问题是来自于我们缺乏天然的应用样品,也没有办法较好地学习,也直接导致了整个模型设计上的困难。

顶一下
(0)
0%
踩一下
(0)
0%
网友评论     无需注册 即可发布评论留言
主页小编 :如果你认为本站不错,请大家把(主页)告诉给你的朋友哦!
匿名评论
Copyright © 2013-2019 HHYYWZ.分分彩群 版权所有